ASCE-NH SECTION LUNCH & LEARN

Mahmood Khwaja, PE National Discipline Leader Tunnels

May 23, 2023

A TUNNELLED SOLUTION FOR THE CEMETERY BROOK DRAIN TUNNEL PROJECT Manchester, NH

Terracon JCK

NORMANDEAU ASSOCIATES ENVIRONMENTAL CONSULTANTS HAGER-RICHTER GEOSCIENCE, INC.

Agenda

- Tunnels for Stormwater Conveyance & Flood Control
- Overview of Tunneling
- Cemetery Brook Drain Tunnel Project

Tunnels for Stormwater Conveyance & Flood Control

Tunnels

- Underground horizontal excavation
- Excavated from a shaft, trench or portal
- Size (< 1 foot to 65 feet diameter)
- Water conveyance, mines, transportation, transit, utilities, and pedestrian

Why Tunnels

- Store & convey large volumes of stormwater
- Reduced construction related impacts
- Minimize real estate acquisitions
- Long-term and sustainable asset

Large Tunnel Projects

- Conceptual Planning
- Land Acquisition
- Program Controls and Reporting
- Permitting
- Engineering
- Initial technical investigations
- Delivery method analysis and selection
- Construction Procurement

- Project Administration
- Flexibility in reacting to external impacts
- Quality Control/Quality Assurance
- Commissioning and Closeout
- Secure financing and manage budget
- Interagency Coordination
- Construction Management and Support

Overview of Tunneling

Hard Rock TBM

- Low permeability and good quality hard rock
- Relatively inexpensive
- Very efficient construction
- Cast-in-place lining
- Limited flexibility

Soft Ground TBMs

- Earth Pressure Balance (EPB):
 - Mixes excavated soil, foaming agents, water and polymers in the working chamber behind cutter head. The muck pressure is controlled by the pressure wall.
 - Screw conveyor takes the mud out of the machine as the machine moves forward.
- □ Slurry Shield (SS):
 - The cutter head is balanced by bentonite slurry.
 - Screw conveyor is replaced by two pipes circulating the slurry in and out of the working chamber.

- Series of trailing gear modules
- 300 ft to 400 ft behind the shield

Sequence

- Excavate launching/receiving shafts
- Assemble and Launch TBM in launching shaft
- Excavate tunnel / erect lining
- Retrieve TBM from receiving shaft
- Repurpose or backfill shafts
- Limits on alignment curvatures
- Cost effective for tunnels longer than 1 mile
- Fast construction
- Limited flexibility

Mined Tunnels

- Often Used in combination with Bored Tunnels (adits and connections)
- Very flexible
- Cost effective for tunnel shorter than 1 mile
- Multiple headings to increase productivity
- Each heading requires a full crew
- Fast mobilization

Subsurface Investigation

- Phased Investigations Often Work the Best
- Project focused exploration/testing Program
 - Phase 1: Conceptual Stage
 - Desk study plus project specific field and lab investigation
 - Alignment and profile; Shaft locations
 - Method of construction
 - Geophysical Methods
 - Typical boring spacing 500 ft 1000 ft

Phase 2: Preliminary Design

- Boring spacing 100 ft 300 ft
- Ensure adequate coverage at shaft locations
- Develop a more refined subsurface profile
- Design development and manage project geotechnical risks
- Phase 3: Final Design
 - Conducts select additional investigations
 - Prepare documents that convey the tunneling conditions fairly to all knowledgeable bidders (fill in the data gaps)

Contracting for Underground Construction

Geotechnical Data Report (GDR)

- Presents all subsurface data
- Just the facts

Geotechnical Baseline Report (GBR)

- "Levels the playing field" for bids
- Interpretation of the conditions
- Baseline for change condition claims

Differing Site Conditions (DSC)

Clause needs to be added to contract documents.

S(0

Tunnel Lining

- Purpose
- Initial / Final
- One-Pass / Two-Pass

- S5 S5 S3 S3 S1 S1 S1 S1
- Dependent on tunneling method and tunnel use

Tunnel Lining

Structural design requirements

Building Code Requirements

Commentary on Building Code Requirements for Structural Concrete

American Concerns &

for Structural Concrete (ACI 318-19)

(ACI 318R-19)

An ACI Standard

and Construction Guide Specifications

- Project specific
 - ACI
 - AASHTO
 - AREMA
 - Waterproofing

Report on Des Construction of F Reinforced Precest

Concrete

ALT AL

Other

Tunnel Lining

- Reinforcement
 - Unreinforced
 - Deformed bar/wire mesh
 - Fiber Reinforced

Working Shafts & Drop Shafts

Working Shafts

Vortex Drop Shaft

- Anacostia River Tunnel Project
 - Launch shaft
 - Final large-scale vortex drop shaft

Baffle Drop Shaft

- Stormwater cascades down baffle
- Into deaeration chamber / Adit
- Feeds into the main tunnel

CEMETERY BROOK DRAIN TUNNEL PROJECT

Alternative evaluation • Preliminary engineering Open-cut • Tunnel • Trenchless technologies 12,000-ft • 12-ft ID Soft ground • Mixed face • Rock Environmental assessment • Permitting • Traffic management Hydraulics engineering • Ground investigation • Community outreach Structural engineering • Traffic management

CITY OF MANCHESTER MANCHESTER, NH

Cemetery Brook Drain Tunnel Discussion

- Program Background & Importance
- Alternatives
- Design and Construction Considerations
- Hydraulic Modelling
- Project Status

Program Background & Importance

Program Background & Importance

- City of Manchester committed to solving CSO Issues
- 1995 LTCP agreement US EPA/NHDES/City
- Phase I Combined Sewer Overflow (CSO) Abatement Program
- 2010 LTCP updated
- Phase II Combined Sewer Overflow (CSO) Program

Program Background & Importance

- Wastewater Treatment Plan improvements
- System optimization
- Brook removal
- Sewer separation

Location

Program Components

Project Goals and Objectives

Brook removal Sewer separation System capacity Street flooding CSO discharge

Alternatives

Open Cut Alternative Alignment

Alignment – Queen City Avenue

Alignment – Rail Trail Corridor

Alignment – Massabesic Avenue & Elliot Hospital

Tunnel Alternative

Design and Construction Considerations

Tunnel Alignment

TBM Launching and Main Construction Staging Area

TBM Receiving Area

Outfall Structures / Existing EIN / CSX Crossing

Drop Shaft 6 / Existing Storm Drain Intercept

Cemetery Brook Inlet

44

Ground Investigation Program (GIP) Overview

- Field Activities
 - Soil Boring
 - Rock Coring
 - Packer Tests
 - Geophysical Survey
 - ATV/OTV Televiewer Logging
 - Seismic Refraction

- Laboratory Testing
 - Soil
 - Index Testing
 - Rock
 - Uniaxial Compressive Strength
 - Tensile Strength
 - Point Load
 - CERCHAR
 - Drillability Index
 - Petrographic Analysis

Geotechnical Investigation (GIP) Program Overview

- Seismic refraction preceded borings
- 88 borings
 - 50/80-ft deep
 - 24 Monitoring Wells
 - Packer tests
- Geophysical Survey
 - 11000-ft
 - GIP Phase 2

GIP Findings

- Subsurface strata
 - Fill
 - Glaciofluvial deposits
 - Glaciolacustrine deposits
 - Glacial till
 - Bedrock
- Groundwater varies 6 ft to 20+ ft bgs
- Bedrock: 10-ft to 110 ft bgs

Laboratory Test Results - Rock

- Tensile Strength
 - 524 psi → 1,836 psi
- UCS/Elastic Modulus
 - UCS: 1,000 psi → 32,000 psi; Average 13.6 ksi
 - EM: 1,485 ksi → 9,687 ksi
- CERCHAR (Abrasiveness)
 - Very → Extreme
- Point Load Test (Correlated UCS)
 - 2,900 ksi → 23,300 ksi

CDM	Splitting Tensile Strength of Intact Rock Core Speci by ASTM D3967							
2111		Laboratory Test results Summary Sheet						
Client: Project Name: Project Location: Date Tested: Date Reviewed;	City of Mano Cemetery Br Manchester, 7/29/2020 8/27/2020	hester rook CSO Pre NH	éminary Desig	Project Number: 186-243837 Task: Task3.GP Assigned By: M. Khwaja Tested by: <u>MP</u> Raviewed By: <u>AS</u>				
Boring Number	Sample ID	Depth	Preparation	Density	Failure Load	Splitting Tensile Strength	Failu Type	
	1000		here and the	lb/cu.ft.	ibf.	psi		
CEM-2A	C1	28.1-28.6	Saw Cut	156.9	2139	675.0	1	
CEM-3A	C2	42.5-42.8	Saw Out	182.3	2511	821.6	1	
CEM-4A	C5	44,1-49,1	Saw Out	178.4	3455	1163.5	1	
CEM-5A	C9	70.7-71.1	Saw Cut	183.0	1858	687.4	1	
CEM-5/6A	61	75.3-75.8	Saw Cut	174.4	3880	1266.5	1	
CEM-BA	61	82.0-82.3	Saw Cut	137.2	3197	862.9	1	
CEM-9A	62	65.5-06.9	Saw Cut	163.0	4138	1304.2	1	
CEM-1B	01	42.2-44.0	Saw Cur	100.1	5943	1835.9	1	
UEM-2B	02	31.4-31.8	Saw Out	192.0	1453	524.0	4	
CEM-JD	03	29.1-39.9	Saw Cut	102.0	2291	/02.9		
CEM-4D	00	29.0-30.4	Saw Cut	204.7	2298	8/9./		
CEM-0B	63	21.8-28.0	Saw Cut	161.2	5188	1006.0	1	
Notes Sample was measure ASTM requires the the The reported thickne	ed and tested i tickness-to-dia ss (L) is the av	n a laboratory meter ratio (L erage of three	/ air dry conditi /D) of each tes e measuremen	on after trimm It specimen to ta	ing prepara be between	tion. 1 0.2 and 0.75.		
The reported diameter	er (D) is the av	erage of three	e measuremen	15.				
Failure Type:		2000						
1:	Intact Material	Failure						
2:	Discontinuity F	alure						
3:	Intact Material	and Disconti	nuity Failure					
4	No visible falu	re planes. Sz	impe compres	sectimo foliat	005			

Rock Drillability Tests (1) (2)									
Test Results:									
Brittleness Value S ₂₀ , (%)	Flakiness, (f)	Compaction Index	Density, (g/cm ³)	Sievers J-Value, (0.1 mm)	Abrasion Value, (mg)	Abrasion Value Steel Cutters, (mg)			
40.33	1.33	2	2.71	13.73	4.05	43.75			
Low				Medium	Low	Very High			

Classification Category	Medium	Medium	Medium		
Assessed value	44	32	8.9		
	Drilling Rate Index	Bit Wear Index	Cutter Life Index		
Calculated Indices:					

Rock Quality

- High Rock Quality Designation (RQD)
- Low number of Joints & discontinuities
- Low permeability
- High strength
- Extremely abrasive

ANCHESTER CSO CEMETERY BRINK PUBLE	2 MAN	HESTER	NH OIS	10-92794	0.00	Red .			32
v - 100 80.00	F-15	25		- Ga 114	sis in	La Rea No			
7	- 212	C6	52.0 - 7A.0	ija /20		te pas de			
-	- 46	4.7	72.0 - 76.0	be the		De Lan			TRACELOW AND AND THE
		a	26 - 10	\$		en 648 32			0
le to i	200	100	11		-	-		1	
Participation of the second									
- Later		1		- Silester					
Charles and the second							Alter Street		

Photo 65: F-43 C5-C8

Photo 66: F-43 C9-C10

GIP Phase 1 Environmental Testing – Group 1

- Grain size distribution
- Pressurized face
- Soft ground / rock
- Segmental lining

Hydraulic Physical Model

Hydraulic Physical Scaled Model

- Evaluate design elements
 - Air movement
 - Venting
 - Connection criteria
- Two types of drop shafts
 - In-line drop shaft
 - Off-line drop shaft
- Outfall structures
 - Transition
 - Energy dissipation/Apron

Tunnel and Outfall Structures

Project Status

CEMETERY BROOK DRAIN TUNNEL PROJECT

Preliminary/Final engineering 12,000-ft • 12-ft ID • Segmentally lined tunnel Design through Q2 2024 Bid late Q3 2024 (tentative)

CITY OF MANCHESTER MANCHESTER, NH